Antimicrobial Additives in Medical-Grade Polyethylene for Infection Control
Main Article Content
Abstract
Silver and zinc oxide nanoparticles were introduced as antimicrobial agents in medical-grade polyethylene. The modified polymer exhibited strong antibacterial efficacy against E. coli and S. aureus, with promising potential for hospital-use plastics. The implications of these findings extend across various industrial applications including packaging, biomedical devices, automotive parts, and construction materials. Future work will focus on scaling synthesis methods, evaluating environmental stability, and conducting long-term performance tests. The results contribute to the growing body of research on additive-enhanced polymers and open avenues for optimizing their use under practical service conditions. The implications of these findings extend across various industrial applications including packaging, biomedical devices, automotive parts, and construction materials. Future work will focus on scaling synthesis methods, evaluating environmental stability, and conducting long-term performance tests. The results contribute to the growing body of research on additive-enhanced polymers and open avenues for optimizing their use under practical service conditions. The implications of these findings extend across various industrial applications including packaging, biomedical devices, automotive parts, and construction materials. Future work will focus on scaling synthesis methods, evaluating environmental stability, and conducting long-term performance tests. The results contribute to the growing body of research on additive-enhanced polymers and open avenues for optimizing their use under practical service conditions.